Channel noise is essential for perithreshold oscillations in entorhinal stellate neurons.
نویسندگان
چکیده
Previous experimental and computational work (for review, see White et al., 2000) has suggested that channel noise, generated by the stochastic flicker of voltage-gated ion channels, can be a major contributor to electrical membrane noise in neurons. In spiny stellate neurons of the entorhinal cortex, we remove the primary source of channel noise by pharmacologically blocking the native persistent Na+ conductance. Via the dynamic-clamp technique (Robinson and Kawai, 1993; Sharp et al., 1993), we then introduce virtual persistent Na+ channels into the membranes of the stellate neurons. By altering the mathematical properties of these virtual "knock-ins," we demonstrate that stochastic flicker of persistent Na+ channels is necessary for the existence of slow perithreshold oscillations that characterize stellate neurons. Channel noise also alters the ability of stellate neurons to phase lock to weak sinusoidal stimuli. These results provide the first direct demonstration that physiological levels of channel noise can produce qualitative changes in the integrative properties of neurons.
منابع مشابه
Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex.
Neurons of the superficial medial entorhinal cortex (MEC), which deliver neocortical input to the hippocampus, exhibit intrinsic, subthreshold oscillations with slow dynamics. These intrinsic oscillations, driven by a persistent Na+ current and a slow outward current, may help to generate the theta rhythm, a slow rhythm that plays an important role in spatial and declarative learning. Here we s...
متن کاملStochastically Gating Ion Channels Enable Patterned Spike Firing through Activity-Dependent Modulation of Spike Probability
The transformation of synaptic input into patterns of spike output is a fundamental operation that is determined by the particular complement of ion channels that a neuron expresses. Although it is well established that individual ion channel proteins make stochastic transitions between conducting and non-conducting states, most models of synaptic integration are deterministic, and relatively l...
متن کاملIntrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid cell firing fields
The medial entorhinal cortex (MEC) is an increasingly important focus for investigation of mechanisms for spatial representation. Grid cells found in layer II of the MEC are likely to be stellate cells, which form a major projection to the dentate gyrus. Entorhinal stellate cells are distinguished by distinct intrinsic electrophysiological properties, but how these properties contribute to repr...
متن کاملIonic mechanisms in the generation of subthreshold oscillations and action potential clustering in entorhinal layer II stellate neurons.
A multicompartmental biophysical model of entorhinal cortex layer II stellate cells was developed to analyze the ionic basis of physiological properties, such as subthreshold membrane potential oscillations, action potential clustering, and the medium afterhyperpolarization. In particular, the simulation illustrates the interaction of the persistent sodium current (I(Nap)) and the hyperpolariza...
متن کاملDynamics of rat entorhinal cortex layer II and III cells: characteristics of membrane potential resonance at rest predict oscillation properties near threshold.
Neurones generate intrinsic subthreshold membrane potential oscillations (MPOs) under various physiological and behavioural conditions. These oscillations influence neural responses and coding properties on many levels. On the single-cell level, MPOs modulate the temporal precision of action potentials; they also have a pronounced impact on large-scale cortical activity. Recent studies have des...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 43 شماره
صفحات -
تاریخ انتشار 2005